Brief information about the project

Name of the project	AP09058406 "Modeling of flood, breakthrough waves and
i tunie of the project	mud-stone impurities during normal and emergency dam
	breaks in a complex system of rivers and canals."
Relevance	This Project is devoted to the development of
Kelevance	mathematical models that describe the transfer of mud-
	stone flows under normal and abnormal conditions,
	considering the terrain and their numerical
	implementation. The software package being developed in
	the project will allow real-time monitoring of mud-stone
	flow in a complex system of rivers and canals.
Purpose	development of an expert system for the elimination of
Tupose	floods, breakthrough waves and the transfer of mud and
	stone impurities during the breakthrough of hydraulic
	structures in a complex system of rivers and canals using
	mathematical modeling methods.
Objectives	development of a mathematical model and numerical
Objectives	modeling of the propagation of flood (air - liquid) and
	breakthrough waves in real time.
	conducting a series of computational experiments for
	various flooding scenarios in emergency situations in
	order to minimize damage.
	Conducting a series of computational experiments for
	various dam break scenarios and analyzing the results
	obtained, which can be used to determine the flood
	zone and time.
	Conducting a series of computational experiments for
	various dam break scenarios in cascading open
	channels to develop recommendations for the design of
	new hydraulic structures.
	development of a software package that implements
	operational modeling of the propagation of flood and
	breakthrough waves in real time.
	development of a mathematical model and numerical
	modeling of the propagation of mud and water flows
	(air – liquid – mud) in real time.
	numerical study of the behavior of water flow in a
	sharply expanding channel above a moving layer of a
	homogeneous mud layer.
	conducting a series of computational experiments on
	dam breakthrough to study morphological changes in
	the topography of the river bottom and the destruction
	of the coastal contours and foundation.
	assessment of the duration of the flooding process and
	calculation of the breakthrough wave taking into
	account the mud flow during the collapse of hydraulic
	structures in complex river terrain.
	development of a software package that implements
	operational modeling of the spread of mud and water
	flows (air – liquid – mud) in real time.

	development of a mathematical model and numerical modeling of a mudflow with particles of various sizes (air - liquid - dirt - particles) during an emergency dam break.
	conducting a series of computational experiments for various mudflow scenarios with particles of various
	sizes (air - liquid - dirt - particles) and analyzing the results obtained, which can be used to develop recommendations for eliminating the consequences of
	the accident and protecting populated areas.
	research of new types of multi-level protection in open river channels to minimize damage to the main dam from mudflows with particles of various sizes.
	Conducting a series of computational experiments for
	various scenarios of mudflows and mud flows, considering particles of various sizes through an
	idealized populated area.
	development of a software package that implements a mathematical model of a mudflow with particles of various sizes for various dam break scenarios in open
	complex river beds.
Expected and achieved results	a mathematical model was developed and the propagation of flood (air-liquid) and breakthrough waves was
	numerically simulated in real time.
	A series of computational experiments were carried out for various flooding scenarios in emergency situations in order
	to minimize damage.
	A series of computational experiments were carried out for various dam break scenarios and an analysis of the results obtained, which can be used to determine the zone and time
	of flooding. A series of computational experiments were carried out for
	various dam break scenarios in cascading open channels to
	develop recommendations for the design of new hydraulic structures.
	a software package was developed that implements operational modeling of the propagation of flood and breakthrough waves in real time.
	a mathematical model was developed and the propagation of mud and water flows (air – liquid – mud) was
	numerically simulated in real time.
	The behavior of water flow in a sharply expanding channel above a moving layer of a homogeneous mud layer was numerically studied.
	a series of computational experiments on dam
	breakthrough were carried out to study the morphological changes in the topography of the river bottom and the
	destruction of the coastal contours and foundation
	an assessment was made of the duration of the flooding process and the calculation of the breakthrough wave
	taking into account the mud flow during the collapse of
	hydraulic structures in the complex river terrain.

	a software package was developed that implements
	operational modeling of the spread of mud and water flows
	(air – liquid – mud) in real time.
	a mathematical model was developed and a mudflow with
	particles of various sizes (air - liquid - dirt - particles) during an emergency dam break was numerically
	simulated.
	a series of computational experiments were carried out for
	various scenarios of debris flow with particles of various
	sizes (air - liquid - dirt - particles) and an analysis of the
	results obtained, which can be used to develop
	recommendations for eliminating the consequences of the accident and protecting populated areas.
	New types of multi-level protection in open riverbeds were
	investigated to minimize damage to the main dam from
	debris flows with particles of various sizes.
	A series of computational experiments were carried out for
	various scenarios of mudflows and mud flows, considering
	particles of various sizes through an idealized settlement.
	A software package was developed that implements a
	mathematical model of a mudflow with particles of various
	sizes for various dam break scenarios in open complex riverbeds.
Research team members with	1. Isakhov A. A.
their identifiers (Scopus Author	2. Yakhiyayev F.K.
ID, Researcher ID, ORCID, if	3. Sabyrkulova A. B.
available) and links to relevant	
profiles	
List of publications with links to them	Issakhov A., Borsikbayeva A. Dam-break flow on mobile
	bed through an idealized city: numerical study. Water Resources Management, 2022, 10.1007/s11269-021-
	02977-2 (2019 Impact Factor: 3.517; Scopus: SJR: 0.929,
	percentile: 87)
Patents	-